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ABSTRACT: Rainfall retrieval algorithms for passive microwave radiometers often exploit the brightness temperature

depression due to ice scattering at high-frequency channels ($85GHz) over land. This study presents an alternate method

to estimate the daily rainfall amount using the emissivity temporal variation (i.e., De) under rain-free conditions at low-

frequency channels (19, 24, and 37GHz). Emissivity is derived from 10 passivemicrowave radiometers, including theGlobal

Precipitation Measurement (GPM) Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer 2

(AMSR2), three Special Sensor Microwave Imager/Sounders (SSMIS), the Advanced Technology Microwave Sounder

(ATMS), and four Advanced Microwave Sounding Units-A (AMSU-A). Four different satellite combination schemes are

used to derive the De for daily rainfall estimates. They are all 10 satellites, 5 imagers, 6 satellites with very different equator

crossing times, and GMI only. Results show that De from all 10 satellites has the best performance with a correlation of 0.60

and RMSE of 6.52mm, compared with the Integrated Multisatellite Retrievals for GPM (IMERG) Final run product. The

6-satellites scheme has comparable performance with the all-10-satellites scheme. The 5-imagers scheme performs no-

ticeably worse with a correlation of 0.49 and RMSE of 7.28mm, while the GMI-only scheme performs the worst with a

correlation of 0.25 and RMSE of 11.36mm. The inferior performance from the 5-imagers and GMI-only schemes can be

explained by the much longer revisit time, which cannot accurately capture the emissivity temporal variation.
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1. Introduction

Spaceborne passive microwave radiometers have long been

recognized as key instruments for global rainfall estimates over

land. Early studies in 1980s from the Scanning Multichannel

Microwave Radiometer (SSMR) on board the Nimbus-7 sat-

ellite showed that brightness temperature (TB) has a clear

depression signature under thunderstorms due to the ice par-

ticles’ scattering effect in the atmosphere (Spencer et al.

1983a,b). Many satellites after Nimbus-7 carried the radiom-

eters capable of estimating the surface rainfall rate over land

via this ice scattering concept. These radiometers include

Special Sensor Microwave Imager (SSMI); Special Sensor

Microwave Imager/Sounder (SSMIS); Tropical Rainfall

Measuring Mission Microwave Imager (TMI); Advanced

Microwave Scanning Radiometer for Earth Observing

System (AMSR-E) and its successor, AMSR2; Global

Precipitation Measurement (GPM) Microwave Imager

(GMI); Microwave Radiation Imager (MWRI); Advanced

Microwave Sounding Unit-A and Unit-B (AMSU-A/B); and

Advanced Technology Microwave Sounder (ATMS). Rainfall

estimates from these radiometers serve as the backbone for

generating the widely used global precipitation datasets, including

the National Aeronautics and Space Administration’s (NASA)

IntegratedMultisatellite Retrievals for GPM (IMERG; Huffman

et al. 2015), the Climate Prediction Center’s morphing technique

(CMORPH; Xie et al. 2017), and the Japan Aerospace

Exploration Agency’s (JAXA) Global Satellite Mapping of

Precipitation (GSMaP) dataset (Kubota et al. 2007).

Rainfall retrieval algorithm development has been exten-

sively researched for these passivemicrowave radiometers. For

example, Spencer et al. (1989) proposed the polarization-

corrected temperature (PCT) to detect and retrieve rainfall

over land from SSMI. Grody (1991) developed the scattering

index (SI) technique to estimate the rainfall over land for

SSMI, which was later improved by Ferraro et al. (1994) and

Ferraro andMarks (1995). Both PCT and SImethods primarily

rely on the TB observations at 85GHz over land, which is the

highest available frequency on SSMI. With the successful

launch of the TRMM satellite in 1997, many retrieval algo-

rithms for precipitation over land have also been developed for

TMI (Wang et al. 2009; Gopalan et al. 2010; Petty and Li 2013b;

Islam et al. 2014). In addition, retrieval algorithms have also

been developed for sensors with even higher frequencies (e.g.,

150 and 183GHz), including SSMIS (You et al. 2015) and

ATMS (Surussavadee and Staelin 2010; You et al. 2015).

Different from these sensor-specific algorithms, generic re-

trieval algorithms with the capability of adapting to all these

radiometers were also developed, including the GoddardCorresponding author: Yalei You, yyou@umd.edu

MARCH 2021 YOU ET AL . 623

DOI: 10.1175/JHM-D-20-0195.1

� 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:04 PM UTC

https://journals.ametsoc.org/collection/GPM-science
mailto:yyou@umd.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


profiling algorithm (GPROF; Kummerow et al. 2015), the

Microwave Integrated Retrieval System (MiRS; Boukabara

et al. 2011), GSMaP level-2 precipitation retrieval algorithm

(Aonashi et al. 2009; Shige et al. 2009), and the one-dimensional

variational (1DVAR) retrieval model (Meng et al. 2017).

To more accurately estimate the surface rainfall rate, these

hydrometeor-based algorithms have to mitigate the influence

from the land surface, since TB reflects the integrated effect

from the hydrometeors in the air and the surface emission. To

this end, the entire globe is divided into 58 3 58 grid boxes in

each season in the GSMaP retrieval process (Aonashi et al.

2009). Similarly, ancillary land surface type information (Aires

et al. 2011) has been used by several retrieval algorithms (You

et al. 2015; Kummerow et al. 2015). To largely avoid the pos-

sible surface contamination, instead of using the signatures

from window channels (e.g., 85GHz), Staelin and Chen (2000)

developed a rainfall retrieval algorithm solely dependent on

the microwave observations near opaque water vapor and

oxygen absorption channels (183 and 52GHz).

Brocca et al. (2014) proposed a conceptually different

rainfall retrieval algorithm by using the soil moisture datasets

derived from spaceborne microwave sensors. They concluded

that the retrieved 5-day rainfall accumulation from the soil

moisture datasets agree reasonably well with a ground gauge

analysis dataset, indicated by the correlation being as large as

0.54. The ability to retrieve rainfall from the soil moisture is

further demonstrated by Koster et al. (2016), which showed

that satellite missions designed for soil moisture observations

indeed contain valuable rainfall information. In fact, soil

moisture information has also been exploited to improve the

hydrometeor-based rainfall retrieval results (Crow et al. 2009;

Pellarin et al. 2013).

There are key differences between these two types of rainfall

algorithms, which are referred to as ‘‘hydrometeor-based’’ and

‘‘soil-moisture-based’’ retrieval algorithms for convenience.

First, the microwave sensors designed for soil moisture mea-

surement utilize lower frequencies than those suitable for hy-

drometeor measurement. For example, the radiometers on

board the Soil Moisture Active Passive (SMAP) satellite and

the Soil Moisture and Ocean Salinity (SMOS) satellite have a

frequency of 1.4GHz. TheAdvanced Scatterometer (ASCAT)

on board the MetOp satellites operates at ;5.2GHz. In con-

trast, the primary frequencies to measure the ice scattering

over land from passive microwave radiometers are around

85GHz and higher (e.g., 150 and 183GHz). The lower fre-

quencies used for soil moisture measurement can penetrate a

thicker layer of soil and thereby provide more information

about the rainfall impact on the soil, while the higher fre-

quencies are more sensitive to the hydrometeors in the atmo-

sphere. Second, the hydrometeor-based algorithm attempts to

minimize the possible surface contamination (e.g., soil mois-

ture, surface temperature, and vegetation). On the contrary,

the soil-moisture-based algorithm attempts to limit the impact

from the hydrometeors. Third, the hydrometeor-based algo-

rithm uses the instantaneous observations at the time of the

overpass, providing a snapshot of the rainfall rate at that time.

In contrast, the soil-moisture-based algorithms use observa-

tions that are not contaminated by hydrometeors in the

atmosphere, and therefore are more representative of accumu-

lated rainfall over some time prior to the observation.

The objective of this study is to estimate the daily rainfall

accumulation from the land surface emissivity variation due to

the rainfall impact. Previous work showed that the land surface

microwave emissivity tends to decrease after rainfall due to the

increase of soil moisture (Jackson 1993; Ferraro et al. 2013;

You et al. 2014; Yin et al. 2019). In other words, the land sur-

face microwave emissivity variation is directly related to soil

moisture change. Therefore, in essence, this work attempts to

relate the soil moisture variation to the rainfall accumulation,

similar to Brocca et al. (2014) and Koster et al. (2016). The key

innovation is that we apply the soil-moisture-based retrieval

concept to the low-frequency channels (19, 24, and 37GHz) from

10 satellites (Table 1), instead of soil moisture-specific channels

(1.4GHz) that are only available on one or two satellites.

Previous rainfall retrieval algorithms for these 10 sensors es-

timated the instantaneous rainfall rate based on the ice scat-

tering signal primarily from the high frequencies ($85GHz)

(e.g., Ferraro et al. 2000; Ebtehaj et al. 2015; You et al. 2015;

Kummerow et al. 2015; You et al. 2016). For the lower-

frequency channels, the ice scattering signal is less pronounced

over land due to the longer wavelength (Spencer et al. 1983a). In

addition, the high and highly variable land surface emissivity

often masks out the liquid raindrop emission signal at the low-

frequency channels (Prigent et al. 2006; Munchak et al. 2020).

For these reasons, these low-frequency channels are either not

used or play a secondary role in the instantaneous rainfall re-

trieval process. In contrast, this study exploits the soil moisture

change (instead of the hydrometeors in the air) due to the recent

rainfall impact by using the nonraining observations at the low

frequencies (19, 24, and 37GHz) for daily rainfall accumulation

retrieval. It is worth mentioning that the nonraining observa-

tions account for ;90% of the overall observations.

It is noted that Birman et al. (2015) used the surface emis-

sivities at 89GHz from multiple satellites to estimate the daily

rainfall accumulation over France. As stated in the study, they

use the ‘‘effective emissivity that includes the atmospheric

contribution in cases with cloudy/rainy conditions.’’ By doing

so, their work essentially used the hydrometeor information

(instead of the soil moisture information) under raining con-

ditions because the 89-GHz channel primarily responds to the

ice-scattering signal when there are hydrometeors in the air. In

other words, their work may be categorized as a hydrometeor-

based retrieval algorithm under raining conditions. In contrast,

this study only uses the nonraining emissivities for daily rainfall

estimates at low-frequency channels including 19, 24, and

37GHz, which is a soil-moisture-based retrieval algorithm.

The data and statistical methods used in this study are de-

scribed in section 2. Section 3 presents the retrieval results

from the microwave emissivity temporal variation. Finally, the

conclusions are summarized in section 4.

2. Data and methodology

a. Brightness temperatures and the collocation scheme

TB observations are from 10 passive microwave radiometers,

including three SSMIS on board the Defense Meteorological
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Satellite Program (DMSP) F16, F17, and F18 satellites;

AMSR2 on board the Global Change Observation Mission–

Water (GCOM-W1) satellite; GMI on board the GPM Core

Observatory satellite; four AMSU-A on board NOAA-18,

NOAA-19, MetOp-A, and MetOp-B satellites; and ATMS

on board the Suomi National Polar-Orbiting Partnership

(SNPP) satellite. The channels used in study and their mean

footprint resolution are listed in Table 1. These channels

often have different footprint resolutions. It is necessary to

bring these channels to a common resolution.

This study takes the 19-GHz footprint of SSMIS as the

‘‘nominal’’ resolution primarily because it has the coarsest

resolution among all the imagers’ channels (GMI, SSMIS,

and AMSR2, Table 1). It is much easier to downgrade the

finer resolutions to this coarser resolution than vice versa.

Additionally, we derive the emissivity temporal variation

later in each 0.58 grid box, and this approximately corre-

sponds to the 19-GHz resolution of SSMIS (59 km) in the

tropical region. The much finer spatial resolution footprints

(e.g., 5 km) are averaged (downgraded) to this coarser res-

olution by selecting the closest n pixels to the nominal pixel

footprint. The variable n is calculated in a way that the area

of the finer-resolution footprints is approximately the same

as that from the nominal resolution (59 km). The footprints

with coarser resolution (e.g., 75 km) and resolution close to

59 km (i.e., 48 km) remain unchanged.

Specifically, for SSMIS we average 18 (59 3 59/14/14 ’ 18)

pixels of 85.5GHz and 3 pixels of 37.0GHz to match this

nominal resolution. The resolution at 21.3GHz is kept the

same. For GMI, we average 16 (59 3 59/15/15 ’ 16) pixels of

18.7GHz, 21 pixels of 23.8GHz, 25 pixels of 36.6GHz, and 71

pixels of 89GHz to approximately match the 59-km resolution.

For AMSR2, we average 8 pixels of 18.7GHz, 5 pixels of

23.8GHz, 25 pixels of 36.5GHz, and 140 pixels of 89.0GHz to

match the nominal resolution. For both ATMS and AMSU-A,

the resolution at 23.8 and 31.4GHz remains unchanged. We

TABLE 1. Channels used for rainfall retrieval from each sensor (V, vertical polarization; H, horizontal polarization). The sensors

employed the cross-track scanning scheme are indicated by the superscript asterisk. Other sensors use the conical scanning scheme. For

the cross-track scanning sensors, the polarization (V/H) and the mean footprint resolution are for the pixel at nadir.

Satellite name Sensor name Freq (GHz) Freq (GHz) Freq (GHz) Freq (GHz)

GPM GMI 18.7 (V/H, 15 km) 23.8 (V, 13 km) 36.6 (V/H, 12 km) 89.0 (V/H, 7 km)

GCOM-W1 AMSR2 18.7 (V/H, 22 km) 23.8 (V/H, 26 km) 36.5 (V/H, 12 km) 89.0 (V/H, 5 km)

F16 SSMIS 19.4 (V/H, 59 km) 21.3 (V, 59 km) 37.0 (V/H, 36 km) 85.5 (V/H, 14 km)

F17 SSMIS 19.4 (V/H, 59 km) 21.3 (V, 59 km) 37.0 (V/H, 36 km) 85.5 (V/H, 14 km)

F18 SSMIS 19.4 (V/H, 59 km) 21.3 (V, 59 km) 37.0 (V/H, 36 km) 85.5 (V/H, 14 km)

SNPP ATMS* 23.8 (V, 75 km) 31.4 (V, 75 km) 88.2 (V, 32 km)

NOAA-18 AMSU-A* 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)

NOAA-19 AMSU-A* 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)

MetOp-A AMSU-A* 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)

MetOp-B AMSU-A* 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)

FIG. 1. Coincident observation number in each 2.58 grid box between GMI and nine other sensors, including AMSR2, SSMIS-F16,

SSMIS-F17, SSMIS-F18, ATMS-SNPP, AMUSA-MetOp-A, AMSUA-MetOp-B, AMSUA-NOAA-18, and AMSUA-NOAA-19. The

number is scaled by 100 in each plot. All data are from March 2014 (launch of the GPM satellite) to December 2018.
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average 4 pixels of 88.2GHz from ATMS and 14 pixels of

89.0GHz from AMSU-A to match the nominal resolution

of 59 km.

b. Convert TB from other nine sensors to TB at the GMI

frequencies

As shown in Table 1, the frequencies among these 10 radi-

ometers are not identical. The slight frequency difference re-

sults in different TBs for the same surface background and

hydrometeor profile (Yang et al. 2014). In the following dis-

cussion, we demonstrate a method to convert TBs from other

nine sensors to GMI frequencies. For convenience, we do not

distinguish the slight frequency differences among these sen-

sors from now on unless otherwise specified. These channels

are referred to as V19, H19, V24, V37, H37, V89, and H89.

This study is to estimate rainfall accumulation by emissivity

temporal variation derived from these TB observations. To this

end, it is necessary to convert all TBs at similar frequencies to

the same frequency. The conversion process has been detailed

in You et al. (2017, 2018). Here, only a brief summary is

provided.

The following discussion takes the GMI and SSMIS (F18) as

an example to discuss the conversion process, which can be

summarized into four steps:

FIG. 2. Scatterplots between GMI TBs and estimated TBs from AMSR2 at (a) H19, (b) H37, and (c) H89, using the simulta-

neous conical overpass pairs between GMI and AMSR2 over the grid box of 328N, 1038W from March 2014 (launch of the GPM

satellite) to December 2018. (d)–(f) As in (a)–(c), but between GMI and SSMIS-F18. (g)–(i) As in (a)–(c), but between GMI and

ATMS-SNPP.
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1) Find the simultaneous conical overpass (SCO) pairs be-

tween GMI and SSMIS (Yang et al. 2011; You et al. 2017,

2018). The SCO pairs are pixels from these two satellites,

which are at most 5 km apart and 5min away.

2) Decompose the GMI TBs from these SCO pairs into

principal components (PCs).

3) Use the SSMIS TBs in these SCO pairs to estimate the first

several PCs by a linear regression model. This study selects the

first four PCs,which accounts for over 90%of the total variance.

4) Apply the coefficients derived from the SCO pairs to the

whole SSMIS data. By doing so, we obtain the estimated

PCs from SSMIS. These PCs are converted back to TBs at

the GMI frequencies.

The same procedure is applied to AMSR2, SSMIS (F16

and F17), ATMS, and AMSU-A. The V37-GHz channel

from F17 is not used since the data from April 2016 are not

processed by the calibration team due to the large noise.

The missing V37 channel on F17 SSMIS shows little in-

fluence on the TB conversion. On the other hand, both

ATMS and AMSU-A only have the vertically polarized

channels, and both radiometers do not have channels

around 19 GHz. Later analyses will show that the root-

mean-square error (RMSE) from the TB conversion based

on ATMS and AMSU-A is noticeably larger than those

from AMSR2 and SSMIS. However, section 3 clearly

demonstrates the improved rainfall retrieval performance

by including these five sounders due to the increased

sample size.

In contrast to our previous studies (You et al. 2017, 2018),

this study applies the TB conversion procedure at each 2.58 grid
box. By doing so, we show later thatRMSE from this conversion

is less than 3K over almost all the areas from 608S to 608N.After

this TB conversion process, GMI and other nine sensors all have

channels of V19, H19, V24, V37, H37, V89, and H89.

c. Rainfall datasets

The half-hour IMERGFinal run (version 06A) product at 0.18
is used to investigate the rainfall impact duration period. These

IMERG data are downgraded to the 0.58 spatial resolution by

the simple arithmetic average, which is also taken as the surface

‘‘reference’’ rainfall dataset for retrieval. In addition, we use the

KuPR rainfall observations along with the GMI TB observa-

tions to train a rain/no-rain screening method, which is applied

to all TB observations to filter out the raining pixels.

Data in this study are all fromMarch 2014 (launch of the GPM

satellite) to December 2018 over the 608S–608N land areas.

d. Ancillary parameters

To derive the land surface emissivity, we use hourly

surface temperature and 3-hourly temperature and hu-

midity profiles at the 0.58 3 0.6258 resolution from Modern-

Era Retrospective Analysis for Research and Applications,

version 2 (MERRA-2) (Gelaro et al. 2017). We also use the

NOAANational Environmental Satellite, Data, and Information

Service’s (NESDIS) daily Global 4 km Multisensor Automated

Snow/Ice Map (GMASI) to filter out pixels associated with the

snow/ice on the ground (Romanov 2017).

e. Rainfall detection by LDA

The objective of this study is to use the emissivity under

nonraining conditions to retrieve daily rainfall accumulation.

To this end, we use the linear discriminant analysis (LDA)

approach (Turk et al. 2014; You et al. 2015) to filter out the

raining pixels. This method is first developed based on GMI

and KuPR observations, then applied to converted TBs from

other nine sensors.

Suppose there exist two training databases from KuPR (i.e.,

raining versus nonraining databases), which contain multivar-

iables x (i.e., V19, . . . , H89) in each database. According to

FIG. 3. The RMSE in each 2.58 grid box between GMI and AMSR2 at (a) H19, (b) H37, and (c) H89. (d)–(f) As in (a)–(c), but between

GMI and SSMIS-F18. (g)–(i) As in (a)–(c), but between GMI and ATMS-SNPP. All data are from March 2014 (launch of the GPM

satellite) to December 2018.
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Wilks (2011) the linear discriminant function to distinguish

these two groups is

d
1
5 aT 3 x , (1)

where the superscript T stands for the transpose. The term a is

the discriminant vector, calculated in the following way:

a5S21
pool(x1 2 x

2
) ,

S
pool

5
n
1
2 1

n
1
1 n

2
2 2

S
1
1

n
2
2 1

n
1
1 n

2
2 2

S
2
; (2)

xi and Si (i5 1, 2) represent the mean vector and covariance of

each group, respectively. ThematrixSpool is the weighted average

of the two sample covariance matrices from these two datasets,

andn1 andn2 are the samples size in these twogroups, respectively.

To assess the rainfall detection performance, four numbers in a

2 3 2 contingency table (hit, miss, false alarm, and correct nega-

tive) are computed (Wilks 2011). A hit (referred to as a) is defined

as both the reference (KuPR) and the LDA method detecting

rainfall. A false alarm (b) is when the LDA method detects

rainfall while the reference does not, while a miss (c) is when the

reference detects rainfall but the LDA method does not. A cor-

rect negative (d) is when both the reference and the LDAmethod

detect no rainfall.

This study further computes the accuracy metrics derived

from these four numbers, including probability of detection

(POD), false alarm rate (FAR), and Heidke skill score (HSS).

These metrics are calculated as follows:

POD5
a

a1 c
,

FAR5
b

b1d
,

HSS5
2(ad2 bc)

(a1 c)(c1 d)1 (a1 b)(b1d)
. (3)

The POD (FAR) values vary from 0 to 1 with a larger POD

(smaller FAR) indicating better detection performance. We use

the HSS value to judge the overall detection performance with a

larger HSS value indicating a better overall performance.

f. Emissivity computation

We compute the emissivity values for each pixel at different

channels based on Munchak et al. (2020), which is briefly

summarized here. The emissivity vector is calculated from the

converted brightness temperatures (i.e., other satellites’ ob-

servations are converted to the GMI channel set). This allows

us to use the same atmospheric absorption and incidence angle

assumptions that are used for GMI in Munchak et al. (2020).

The emissivity and atmospheric temperature and water vapor

profile are retrieved using an optimal estimation inversion

procedure. For the set of channels used in this study, however,

there is little independent information about the atmospheric

profile, and the retrieved emissivities are essentially those that

reproduce the converted brightness temperatures, given the

space–time interpolated MERRA2 skin temperature and at-

mospheric profile.

g. Emissivity temporal variation definition

To derive emissivity temporal variation, it is necessary to

determine when the observations from different satellites are

considered as observations for the same location. This study

first divides the globe into a 0.58 grid box. We define any ob-

servation in the same 0.58 latitude–longitude grid box as ob-

servations at the same location. We choose the 0.58 grid box

because the nominal resolution (59 km) is approximately 0.58
in the tropical region. Choosing a different grid size (e.g., 0.258
or 18) does not affect the major conclusions of this work.

The emissivity e temporal variation De is defined as

De5 e
t0
2 e

t21
, (4)

Dt5 t
0
2 t

21
, (5)

where et0 is the current daily mean emissivity when rainfall

occurs, and et21
is the preceding daily mean emissivity at the

same location without rainfall. The daily emissivity is com-

puted as the arithmetic mean from the selected satellites (e.g.,

all 10 satellites or imagers only, see section 3e for details). A

day is judged as raining day when there is at least one raining

observation on that day.No raining pixels are included in the daily

mean emissivity average process. The time difference between

these two days is Dt. From now on, the De at V19, H19, . . . , V89

will be referred to as Dev19, Deh19, . . . , Dev89 for convenience.

FIG. 4. (a) The POD at each 2.58 grid box, derived fromGMI and

KuPRobservations fromMarch 2014 (launch of theGPM satellite)

to December 2018 at the nominal resolution of 59 km. (b) As in

(a) but for FAR. (c) As in (a), but for HSS.
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h. Bayesian retrieval method

To retrieve the daily rainfall accumulation from De, we
adopt the Bayesian retrieval technique as implemented byYou

et al. (2016). It is worth mentioning that the Bayesian retrieval

concept is widely used in the precipitation/cloud retrieval

community (e.g., Evans et al. 1995; Kummerow et al. 1996;

Chiu and Petty 2006; Noh et al. 2006; Kim et al. 2008; Sano et al.

2013; Petty and Li 2013a; You et al. 2015, 2016).

Mathematically, the retrieval method can be stated as

follows:

f (xjy)5 f (yjx)3 f (x)

f (y)

5
f (yjx)3 f (x)ð
f (yjx)3 f (x)dx

, (6)

where x and y represent the daily rainfall amount and the

emissivity temporal variation vector [Dev19, Deh19, Dev24, Dev37,
Deh37], respectively. Later analyses will show that emissivity at

89GHz has very weak response to the previous rainfall,

compared with the low frequencies. Therefore, in the rainfall

retrieval process, we only include the emissivity at 19, 24, and

37GHz and emissivity at 89GHz is not used. The term f(xjy) is
the posterior probability density function (PDF) of x given the

y, f(x) is the prior PDF of x and f(yjx) is the likelihood function

of y given the precipitation rate x.

The expected value of x is taken as the final estimation for the

daily rainfall amount, which is computed in the following way:

E(xjy)5

ð
x3 f (yjx)3 f (x)dx
ð
f (yjx)3 f (x) dx

,

E(xjy)5

ð
x3 f (yjx)3 f (x) dx
ð
f (yjx)3 f (x)dx

5
E[x3 f (yjx)]
E[f (yjx)] , (7)

where E stands for the expectation.

FIG. 5. (a)–(d) Emissivity at H19, wet (rainfall occurs on previous one day)minus dry (no rainfall on previous one

day) conditions. The rainfall accumulation (R) on previous 1 day is separated into four categories (0,R, 5, 5#R

, 10, 10 # R , 20, and R $ 20), which is computed from the half-hour IMERG final run (version 06A) product.

(e)–(h) As in (a)–(d), but for H37.
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3. Results

This section first shows the TB conversion and the rain/no-rain

detection statistics. Then, we explain how to determine the rain-

sensitive region based on the emissivity depression corresponding

to the different daily rainfall amount. We also explain why we

would like to retrieve the daily rainfall amount, instead ofmultiple-

day rainfall accumulation. Finally, we present the retrieval results

from four different satellite constellation experiments and demon-

strate why satellites with varying equator crossing times (ECTs) are

necessary for the best retrieval performance.

a. Brightness temperature conversion statistics

TBs from other satellites are converted to GMI frequencies

for the temporal variation computation. Figure 1 shows the

sample size of the SCO pairs in each 2.58 grid box between

GMI and other nine sensors over land. It is found that the

sample size in the vast majority of boxes (.99%) for all sat-

ellites is greater than 200, which is sufficient to ensure the

conversion coefficients are stable. In case there are not enough

SCO pairs (,200) in some grid boxes, especially fromMetOp-

A (Fig. 1f) andMetOp-B (Fig. 1g), we aggregate the SCO pairs

in the nearest several grid boxes until the sample size is greater

than 200. This number (200) is selected through trial and error

by considering the trade-off between the regression coeffi-

cients’ stability and regional features.

A case study is selected to demonstrate the TB conversion

performance. Figure 2 shows a conversion case study at

H19, H37, and H89 at the grid box of 32.58N, 1038W between

GMI and AMSR2 (Figs. 2a–c), between GMI and SSMIS-F18

FIG. 6. (a)–(e) Correlation between emissivity atH19 (eh19) and the previous n-hour rainfall accumulation, where

n stands for 1, 3, 6, 12, and 24, respectively. (f)–(j)As in (a)–(e), but for emissivity at H37 (eh37). Rainfall accu-

mulation is computed from the half-hour IMERG final run (version 06A) product.
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(Figs. 2d–f), and between GMI and ATMS (Figs. 2g,h). The

plots from SSMIS-F16 and SSMIS-F17 are similar to those

from SSMIS-F18. The plots from four AMSU-A sensors are

similar to those from ATMS. It is noticed that the estimated

GMI TBs from these three satellites are very close to GMI

observations. In fact, the correlation from all these channels

are over 0.95, and the bias is close to 0, which indicates that the

conversion is working correctly. The RMSE (shown on the

figure) is less than 3K, except the estimated H19 from ATMS.

As mentioned earlier, ATMS does not have frequency around

19GHz. Also, only the vertically polarized channels are

available fromATMS (Table 1). These twoATMS features are

responsible for the larger RMSE from ATMS. Similarly,

RMSE from H19 estimated from AMSU-A is also noticeably

larger than those from AMSR2 and SSMIS. Further, RMSE at

H19 and H37 from AMSR2 is smaller than those from SSMIS,

which is likely due to the finer footprint resolution from

AMSR2, and the almost identical frequencies between GMI

and AMSR2. At 89GHz, RMSE from AMSR2 (Fig. 2c) and

SSMIS-F18 (Fig. 2f) is comparable, likely due to the large

impact of the hydrometeors in the atmosphere.

The global RMSE distribution further confirms the effec-

tiveness of the TB conversion process, which is shown in Fig. 3

for AMSR2, SSMIS-F18, and ATMS. Our analysis shows that

over 95% of the grid has a RMSE less than 3K, which corre-

sponds to ;0.01 emissivity error. Consistent with the case

study, RMSE from ATMS is the largest in almost all regions.

RMSE at H19 and H37GHz from AMSR2 is noticeably

smaller than those from SSMIS (cf. Fig. 3a and Fig. 3d, cf.

Fig.3b and Fig. 3e). For H89 channel, RMSE from SSMIS and

AMSR2 are of comparable magnitude. Analysis has also been

conducted for all the vertically polarized channels (V19, V24,

V37, and V89), yielding very similar results to those from the

horizontally polarized channels.

b. Rainfall detection statistics

Similar to the TB conversion process, we refine our previ-

ously developed LDA rainfall detection method by applying it

to each 2.58 grid box. To ensure the stability of the detection

statistics, the number of raining pixels in each 2.58 grid box is

required to be at least 500.When there are less than 500 raining

pixels, we aggregate the observations in the nearest several 2.58

grid boxes until the sample size is greater than or equal to 500.

At each grid box, a discriminant threshold value is selected to

maximize the HSS.

Our detection method demonstrates reliable rainfall detec-

tion performance. Figure 4 shows that the POD and HSS are

over 0.7 over the majority of the region, and the FAR is less

than 0.05 over most of the region. These detection statistics are

similar to those from the official NASA and JAXA precipita-

tion detection algorithms (You et al. 2020).

We would like to emphasize that in the daily rainfall esti-

mation process, we first filter out the raining pixels judged by

the LDA detection method. Therefore, the signal we use is

essentially the soil emission variation due to the rainfall im-

pact, not the hydrometeors’ effect in the air.

c. Rainfall sensitive regions

Previous studies (Brocca et al. 2014; McColl et al. 2017)

showed that rainfall has little impact on the land surface soil

moisture derived from microwave radiometer observations at

1.5GHz over densely vegetated regions (e.g., the Amazon,

Central Africa, and the eastern United States). This study

primarily exploits the soil moisture change due to the recent

rainfall impact at the low-frequency channels. Therefore, we

would like first to select rainfall sensitive regions, by assessing

the surface emissivity response to rainfall over different re-

gions. This analysis is based on the emissivity derived from

GMI only to reduce the computational time, instead of from all

10 satellites.

It is known that land surface emissivity tends to decrease due

to the soil moisture increase. Figure 5 shows the emissivity

depression at H19 andH37 corresponding to different previous

1-day rainfall accumulation. Specifically, we obtain the previ-

ous 1-day rainfall amount corresponding to each pixel from the

half-hour IMERG Final run product. Then, we compute the

emissivity differences between wet (rainfall occurs in the pre-

vious one day) and dry (no rainfall in the previous one day)

conditions at the 0.58 resolution. For the wet condition, the

previous 1-day rainfall accumulation (indicated by R on the

Fig. 5) is further grouped into four categories, including 0 ,

R ,5, 5 , R ,10, 10 , R ,20, and R . 20mm.

As illustrated in Fig. 5, emissivity decreases over most of the

land areas after rainfall events in the previous day, and the

emissivity depression increases as the rainfall amount becomes

larger. The emissivity drop is particularly evident with rainfall

accumulation greater than 20mm over the Sahel, southern

Africa, the Middle East, the Indian subcontinent, northwest

China, Australia, and the western United States (Figs. 5d,h).

As expected, the emissivity depression magnitude is smaller at

H37 than at H19 since 19GHz is more sensitive to the surface

properties (e.g., soil moisture). The emissivity depression at

FIG. 7. Histogram of correlation coefficients between emissivity

at H19 (eh19) and the previous n-hour rainfall accumulation, where

n stands for 1, 3, 6, 12, and 24. For comparison, all histograms are

vertically scaled to unity by their maximum histogram frequency

counts. Rainfall accumulation is computed from the half-hour

IMERG Final run (version 06A) product.

MARCH 2021 YOU ET AL . 631

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:04 PM UTC



H89 (not shown) is even smaller than H37. Similar analysis has

also been performed for the vertical polarized channels, from

which the rainfall response is weaker than their horizontally

polarized counterparts. These features (e.g., lower frequency

with larger emissivity drop due to the rainfall impact) are well

known from previous studies (Jackson 1993; Ferraro et al.

2013; You et al. 2014; Munchak et al. 2020). Based on these

analyses, we only use the emissivity values at V19, H19, V24,

V37, and H37 for the daily rainfall retrieval and no emissivity

values from 89GHz are included in the retrieval process.

This study attempts to exploit the emissivity depression

signature due to the recent rainfall impact. For this purpose, we

define regions with emissivity drop of at least 0.02 with previ-

ous 1-day rainfall accumulation greater than 20mm as ‘‘rain-

fall-sensitive regions’’ and retrieval is only performed over

these regions. We select this threshold value (0.02) because the

combined uncertainty from the TB conversion and the emis-

sivity retrieval process is approximately 0.02. This threshold

value also balances the retrieval performance and the avail-

ability of regions where our method is applicable. Choosing a

smaller value (e.g., including almost all regions by using 0 as the

threshold value) leads to a worse retrieval performance

because rainfall events have little impact on the emissivity over

the densely vegetated regions (e.g., Amazon and Central

Africa). On the other hand, choosing a larger value (e.g., 0.04)

limits where our retrieval method is applicable, without an

appreciable increase in retrieval performance.

d. Correlation between emissivity and rainfall accumulation
at different time scales

It is desirable to understand how long the rainfall impact can

last. To this end, we compute the correlation between emis-

sivity under rain-free conditions and previous n-hour rainfall

accumulation at the 0.58 resolution over the rainfall-sensitive

regions. Similar to the rainfall-sensitive analysis, this analysis

also only uses the emissivity derived from GMI to reduce the

computational time.

We first attach the previous rainfall accumulations of 1, 3, 6,

12, and 24 h to each emissivity pixel. Then, we compute the

correlation between emissivity and these rainfall accumula-

tions at each 0.58 grid box. The purpose is to check when the

correlation peaks. Figure 6 shows that the correlation magni-

tude between emissivity and rainfall accumulation increases

quickly from 1 h (Fig. 6a) to 12 h (Fig. 6d) for H19, which is

FIG. 8. (a) Time series of emissivity at H19 (eh19) from 21 to 26 May 2014 at the grid box

328N, 1008W. The blue circle indicates the satellite observations, and the red cross indicates

the raining pixels judged by the LDA method, which are discarded in the retrieval process.

(b) As in (a), but for V89. (c) Daily IMERG rainfall accumulation from 21 to 26 May 2014 at

the grid box 328N, 1008W.
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especially evident over Australia. While for the correlation

from 12 h (Fig. 6d) to 24 h (Fig. 6e), such an increase is mar-

ginal. The H37 channel exhibits similar correlation temporal

variations (Figs. 6f–j).

To more clearly show this correlation variation, we plot the

histogram of the correlation between emissivity and previous

n-hour rainfall accumulation (n varies from 1 to 24 h). The

curves corresponding to 12 h (black) and 24 h (purple) are

heavily overlapped (Fig. 7), demonstrating that the correla-

tions between emissivity and 12-h rainfall accumulation is very

similar to the correlation between emissivity and 24-h rainfall

accumulation. This implies that previous rainfall being 13–24 h

away from that pixel has little impact to the emissivity value of

that pixel. In other words, rainfall impact at H19 andH37 often

persists about 12 h. Therefore, this behavior supports our goal

to estimate the daily rainfall accumulation. Of course, the

rainfall impact can propagate into the next day, depending on

at which hour the rainfall occurs. While 2- or 3-day accumu-

lations might be more accurate, most applications prefer daily

accumulations.

e. Rainfall retrieval result

This section begins with a case study to explain in detail how

the retrieval algorithm is implemented. Then we test four re-

trieval experiments to show why using 10 satellites produces

the most accurate retrieval result.

Figure 8a shows the time series of emissivity at H19 over a

selected grid box (328–32.58N, 99.58–1008W) in the central

Texas region. The LDA detection approach indicates that

rainfall occurs on 23, 24, and 25 May 2014 (shown as red

crosses). On 24 and 25 May 2014, these rainfall occurrences

correspond very well with the ‘‘cold’’ TB at V89, shown in

Fig. 8b. On 23 May 2014, the TB depression at V89 is not as

obvious as that on 24 and 25 May 2014. However, IMERG

rainfall product indeed shows the daily rainfall amount at

1.2mm on 23 May 2014.

The daily rainfall retrieval algorithm takes the following

steps: 1) filter out the raining pixels (indicated by the red

crosses) from 23 to 25 May 2014 because the computed emis-

sivities for these pixels are affected by the hydrometeors in the

atmosphere; 2) compute the daily mean emissivity using the

nonraining values; 3) compute the daily mean emissivity on

the preceding nonraining day (i.e., 22 May 2014, background

emissivity); 4) obtain the emissivity difference between raining

day (23–25 May 2014) and background emissivity (22 May

2014). For demonstration purposes, Fig. 8a only shows the

emissivity temporal variation at H19. In the retrieval process,

we use the emissivity variation at 19, 24, and 37GHz (i.e.,

Deh19, Dev19, Deh24, Dev37, Deh37). This De computation proce-

dure is applied at each 0.58 grid box over the rainfall-sensitive

regions.

Next, we design four experiments to demonstrate the ad-

vantages of using multiple satellites. In each experiment, we

randomly select 80% data at each grid box as the training

dataset, while the retrieval is performed on the other 20%data.

In the first experiment,De at each channel is calculated byGMI

observations only. The second experiment computes De using
all five imagers (four sun-synchronous satellites shown in blue

color in Fig. 9), including GMI, AMSR2, and three SSMISs.

Clearly, the ECTs from F17 and F18 are, on average, only

about 10min apart, indicating that they observe the same lo-

cation at nearly the same time of day. In the third experiments,

we select six sensors, includingGMI and five other radiometers

on board the sun-synchronous satellites (i.e., AMSR2 on board

GCOM-W1, AMSU-A on board NOAA-19, SSMIS on board

F16 and F17, andAMSU-A on boardMetOp-A). The selection

of these five sun-synchronous sensors is based on the fact that

ECTs from them are very different, as shown in Fig. 9. By doing

so, the emissivity temporal variation can be better captured.

The fourth experiments use observations from all 10 sensors to

compute De. For convenience, these four experiments are re-

ferred as ‘‘GMI only,’’ ‘‘5 imagers,’’ ‘‘6 satellites,’’ and ‘‘all 10

satellites.’’

When only the GMI is used to compute De, the retrieval

performance is rather poor, as indicated by the correlation

being 0.25 and RMSE being 11.36mm (Fig. 10a). It is imme-

diately clear that the 5-imagers scheme produces much im-

proved retrieval results. Specifically, the correlation increases

to 0.49 and RMSE decreases to 7.28mm (Fig. 10b). Further

analysis reveals several reasons responsible for this large re-

trieval improvement, which are all related to the observation

sample size. First, the time difference [i.e., Dt in Eq. (2), the

time difference between the raining day and the nonraining

day] is shorter when using five imagers than only using GMI, as

shown in Fig. 11. The time difference is 1 day for over 85%

cases when using five imagers, which means that one can find a

FIG. 9. Equator crossing time (local time in themorning) for nine

sun-synchronous satellites. Satellites with imagers on board are in

blue (i.e., AMSR2 on board GCOM-W1, SSMIS on board F16,

F17, and F18), and satellites with sounders on board are in red (i.e.,

ATMSon board SNPP, AMSU-Aon boardNOAA-18,NOAA-19,

MetOp-A, MetOp-B). The GPM satellite has a precessing orbit,

which means that it overpasses a certain location at varying times

throughout the day.
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nonraining background in the preceding day when using five

imagers for over 85% of the time. In contrast, only about 34%

of the time one can find a nonraining background when only

GMI observations are used. For the majority of the time, the

nonraining background is 2, 3, or even more days away when

only GMI is used. With the longer time difference, it is more

likely that the emissivity varies due to factors other than the

rainfall impact, or the rainfall effect might be missed. Second,

with more observations from five satellites, the diurnal cycle of

the emissivity can be much better captured than that using

GMI observations only. In fact, on average, the daily sample

size over each 0.58 grid box is 10 when using 5 imagers, while it

is only 1 or 2 from GMI. Lin and Minnis (2000) found that the

emissivity of 19GHz from Special Sensor Microwave Imager

(SSM/I) at the earlymorning (0640 local time) is about 0.06 less

than that at other times over a Southern Great Plains site, and

they concluded that dew and surface rewetting effects may be

responsible for the emissivity diurnal cycle. The large emis-

sivity discrepancy between daytime and nighttime (up to 0.1

over some arid regions) has also been noticed by Norouzi et al.

(2012) using AMSR-E observations, although they pointed out

that the different diurnal cycles between the skin temperature

and the soil temperature are responsible for the large emis-

sivity discrepancy. Regardless of the underlying mechanisms

causing the emissivity diurnal cycle, more observations from

multiple satellites can better capture the daily emissivity vari-

ation compared with those from a single satellite. Third, the

increased temporal sampling from multiple satellites provides a

better chance of an observation right after the rainfall has ended,

when its effect on emissivity is maximum.

By carefully selecting six sensors with much different ECTs,

the retrieval performance is further improved, indicated by the

correlation being 0.58 and RMSE being 6.99mm (Fig. 10c).

The time difference between using five imagers and using six

sensors is similar (Fig. 11). That is, over 85% of the time dif-

ference in both experiments is one day. However, with the

much variable ECTs from the 6-satellites scheme, the emissivity

variation can be better captured than that in the 5-imagers

FIG. 10. (a) Density scatterplot between IMERG daily rainfall amount and retrieved daily rainfall amount based

on the emissivity temporal variation (De) at 19, 24, and 37GHz, derived fromGMI observations only. (b) As in (a),

but the De is derived from five imagers, including GMI, AMSR2, and three SSMIS. (c) As in (a), but the De is

derived from six sensors, including GMI and five other radiometers on board the sun-synchronous satellites (i.e.,

AMSR2 on board GCOM-W1, AMSU-A on board NOAA-19, SSMIS on board F16 and F17, and AMSU-A on

boardMetOp-A). These five sensors have very different equator crossing time, as shown in Fig. 9. (d) As in (a), but

the De is derived from all 10 satellites.
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scheme. As mentioned previously, ECTs from F17 and F18 are

very similar from 2014 to 2018 (Fig. 9). By using observations

from all-10-satellites scheme, the retrieval results only improve

marginally with the correlation being 0.60 and RMSE being

6.52mm, compared with that from the 6-satellites scheme. The

marginal improvement is expected since ECTs from several

satellite are similar (Fig. 9; MetOp-A and MetOp-B, F17, F18

and NOAA-18, AMSR2 and ATMS). This means that obser-

vations from these satellites with similar ECTs add little new

information.

A common feature in the retrieval result from Figs. 10b–d is

that for rain rates less than 1mm, the retrieval algorithm has

little skill. This phenomenon may reflect the fact that the soil

moisture has little response for daily rainfall accumulations less

than 1mm.

4. Conclusions and discussions

This study presents a rainfall retrieval algorithm to estimate

the daily rainfall accumulation from nonraining satellite

observations from 10 satellites, including GMI, AMSR2,

SSMIS on board F16, F17, and F18 satellites, ATMS on

board SNPP satellite, and AMSU-A on board NOAA-18,

NOAA-19,MetOp-A, andMetOp-B satellites. In contrast to

the traditionally used ice-scattering signal over land, we use the

land surface emissivity variation signature due to the rainfall

impact for rainfall retrieval by filtering out the raining pixels.

To compute the emissivity temporal variation, we first convert

frequencies from other sensors to GMI frequencies from 19 (or

24) to 89GHz. Results show that RMSE is less than 3K over

the vast majority of the regions for all nine sensors and for all

channels, leading to about 0.01 emissivity uncertainty.

The objective of this study is to use the nonraining pixels to

compute the emissivity. To this end, we need to filter out the

raining pixels first. Our statistical method shows strong capa-

bility to detect raining pixel, indicating by POD and HSS

greater than 0.70 over the majority of the region. The rainfall

retrieval algorithm is only applied to the rainfall-sensitive re-

gion, defined as the areas where the land surface emissivity

drops at least 0.02 at H19 corresponding to the previous 1-day

rainfall accumulation greater than 20mm.

While the best rainfall retrieval performance is achieved by

using observations from all-10-satellites scheme, with the cor-

relation and RMSE being 0.60 and 6.52mm, analysis shows

that by selecting GMI and five sensors on board the sun-

synchronous satellites with much different ECTs (i.e., 6-

satellites scheme), the retrieval performance is comparable

to that from 10 satellites, as indicated by the correlation of 0.58

and RMSE of 6.99mm. In contrast, the retrieval results from

the 5-imagers scheme are noticeably worse than those 6-

satellites and all-10-satellites schemes because the emissivity

variation can bemuch better captured by using all 10 satellites or

six satellites with much different ECTs, compared with only

using five imagers. Furthermore, there is low retrieval skill when

only the GMI observations are used due to the much smaller

sample size, which leads to a longer time difference between the

raining day and the nonraining day. Also, it is not possible to

capture the emissivity diurnal cycle withGMI observations only.

Future work seeks to further include the currently operational

radiometers, including ATMS on board NOAA-20, AMSU-A

on board MetOp-C, WindSat, and FengYun-3 Microwave

Radiometer Imager (MWRI). With more observations, the

retrieval performance from our method is expected to be fur-

ther improved. In particular, we expect a large retrieval per-

formance improvement when the passivemicrowave radiometer

observations around 0800 and 1100 local time are available (see

Fig. 9) in the future.
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